
DOCUMENTATION PAGE

Student Surname

Blomley

First Names

Angus

Student Number

97156721

Course Name and short code
(example: Fashion, FAS)

Broadcast Engineering, BEN18303

Academic year

23-24

Unit Title

Dissertation

Unit Code

C18301

Year, Term

Year 3, Semester 2

Six keywords
(separated by commas)

Broadcast Engineering, TV, Technology, Esports,
Production, Live

Your LEAD QUESTION

Track and identify celestial objects.

By submitting this document:

1. I certify that this assignment is my/our own work and that I am familiar with Ravensbourne’s Plagiarism Policy. I also understand that
plagiarism is a serious academic offence.

2. I certify that this assignment has not been previously submitted for assessment on this programme.
3. Where material has been used from other sources it has been properly acknowledged.
4. I confirm that I have retained an electronic copy of this assignment and understand that written assignments may be submitted to the

JISC Plagiarism Detection Service, I must therefore be able to produce electronic copies of written assignments.
5. I understand that Ravensbourne is at liberty to delete submitted work 12 months after assessment.
6. I also understand that Ravensbourne may wish to use my work (or copy) for future academic purposes in accordance with

Ravensbourne’s regulations.

Celestial Object Tracker

Final Major Project

Angus Blomley

BEN18303

April 2024

BEN18303 iii

Executive Summary

The celestial object tracker is an electronic device that returns live information of
chosen celestial objects on a screen. Similar technology is used in many industries,
like astronomy and astro physics, satellite tracking and space exploration, defence
and military, automation and robotics, environmental monitoring and more.

For amateur astronomers and educational institutions, the accessibility for highly
precise automated tracking systems have been reserved for the well-funded
observatories, leaving it unavailable due to the cost and complexity. To solve this, a
project has been developed for affordable, scalable, and replicable celestial tracking
system.

By combining stepper motors for precise movement, an Arduino, a Raspberry Pi for
control processing and a camera for real-time celestial observations, the project’s
objective is to advance the education in astronomical and photographic studies. The
design of this system allows for automated tracking and alignment of a camera to
specified coordinates in space, that has been extracted from the skyfield API.

The outcome is a cost effective and reliable celestial tracking system easily available
for space scientists, amateur astronomers, and photography enthusiasts. There is a
guide in building this project on the GitHub page and is openly available to be
developed further to test and enhance precision, user friendliness for community and
collaboration improvements.

BEN18303 iv

TABLE OF CONTENTS

1.0 INTRODUCTION………………………………………………………………… 1

2.0 GOALS / AIMS / OBJECTIVES………………………………………………… 1

3.0 REVIEW OF RESEARCH.………………………………………………….….. 1
 3.1 Background To Science………………………………………………… 2
 3.2 Theory……………………………………………………………………. 2

4.0 METHODOLOGY……………………………………………………………….. 3
 4.1 Structural Design………………………………………………………… 3
 4.2 Module Setup and Installation…………………………………………. 7
 4.2.1 GPS – Global Positioning System………………………….. 7
 4.2.2 MPU – Motion Processing Unit……………………………… 9
 4.2.3 Motors, Gearing and Drivers………………………………… 10
 4.3 Software Environment………………………………………………….. 13
 4.3.1 Libraries………………………………………………………… 14
 4.3.2 Initialization and variables……………………………………. 15
 4.3.3 Data acquisition and functions for Arduino…………………. 17
 4.3.4 The Python Script……………………………………………… 20

5.0 CRITICAL REFLECTION REPORT…………………………………………... 24

6.0 BRIEF DESCRIPTION EXHIBITION ELEMENT…………………………….. 24

7.0 FINDINGS / CONCLUSIONS………………………………………………….. 24

8.0 RECOMMENDATIONS / NEXT STEPS……………………………………… 24

9.0 EVOLUTION OF THE PROJECT.……………………………………………. 24

10. TESTING AND VALIDATION………………………………………………….. 26

11. MEETING ORIGINAL SPECIFICATION ……………………………………. 26

12.0 GANT CHART OVERVIEW…………………………………………………. 27

13.0 APPENDIX……………………………………………………………………. 29

14.0 BIBLIOGRAPHY………………………………………………………………. 47

BEN18303 v

LIST OF FIGURES

FIGURE 1. Right Ascension and Declination………………………………………… 3

FIGURE 2. Fusion 360 Sketch of the base and the lid………………………………. 3

FIGURE 3. Fusion 360 Sketch of the pan and tilt…………………………………….. 4

FIGURE 4. Fusion 360 Sketch of pan motor(Y) mount……………………………… 4

FIGURE 5. Extrusion of the base and lid……………………………………………… 5

FIGURE 6. Extrusion of the pan and tilt……………………………………………….. 5

FIGURE 7. Completed 3D print of celestial tracking system…………………………6

FIGURE 8. GPS Module – GT-U7……………………………………………………… 7

FIGURE 9. Satellite level history………………………………………………………. 8

FIGURE 10. Live satellite level…………………………………………………………. 8

FIGURE 11. Live GPS data…………………………………………………………….. 8

FIGURE 12. GT-U7 Active outdoor…………………………………………………… 9

FIGURE 13. Decoded GPS information……………………………………………… 9

FIGURE 14 MPU6050 Module………………………………………………………… 9

FIGURE 15. Close up of IMU………………………………………………………….. 10

FIGURE 16. IMU Aligned with Pi Cam……………………………………………….. 10

FIGURE 17. TMC2208 connected to CNC Shield…………………………………… 10

FIGURE 18. Base motor(X) Layout…………………………………………………… 11

FIGURE 19. Base motor(X) Mounted………………………………………………… 11

FIGURE 20. Tilt motor(Y) Mounted…………………………………………………… 11

FIGURE 21. Serial Interface Example………………………………………………… 14

FIGURE 22. Python Libraries Import………………………………………………….. 15

FIGURE 23. Arduino Libraries Include………………………………………………… 15

FIGURE 24. Start Arduino initialization……………………………………………….. 15

FIGURE 25. Python script initialization and variables……………………………….. 16

FIGURE 26. Define Celestial Objects…………………………………………………. 17

FIGURE 27. Define Arduino Variables………………………………………………… 17

FIGURE 28. Start of Void Loop and GPS Extraction function……………………… 18

FIGURE 29. MPU live data extraction function………………………………………. 18

BEN18303 Vi

FIGURE 30. Void serialEvent function………………………………………………… 19

FIGURE 31. track celestial object function……………………………………………. 19

FIGURE 32. Graphical User Interface screenshot…………………………………… 20

FIGURE 33. Safe Read Line function…………………………………………………. 20

FIGURE 34. Update Data Function Start……………………………………………… 21

FIGURE 35. Parsing GPS Data……………………………………………………….. 21

FIGURE 36. GPS Data Processing……………………………………………………. 22

FIGURE 37. Button Commands Function…………………………………………….. 22

FIGURE 38. Tracking Celestial Objects Function……………………………………. 23

FIGURE 39. Main Function Overview…………………………………………………. 23

FIGURE 40. GPS Satellite Output…………………………………………………….. A-1

FIGURE 41. Arduino to GPS Connection…………………………………………….. A-1

FIGURE 42. Arduino Serial Pins………………………………………………………. A-1

FIGURE 43. Multimeter Testing……………………………………………………….. A-2

FIGURE 44. CNC Shield Schematic………………………………………………….. A-3

FIGURE 45. CNC I2C Connections…………………………………………………… A-4

FIGURE 46. MPU Soldering Process…………………………………………………. A-5

FIGURE 47. No Satellite Fix…………………………………………………………… A-6

FIGURE 48. MPU Serial Output………………………………………………………. A-7

FIGURE 49. MPU Orientation Test 1…………………………………………………. A-8

FIGURE 50. MPU Orientation Test 2…………………………………………………. A-8

FIGURE 51. Outdoor GPS Testing…………………………………………………… A-9

FIGURE 52. U-Center Color Codes…………………………………………………...A-10

FIGURE 53. MPU6050 Circuit…………………………………………………………A-11

FIGURE 54. Original Project Idea…………………………………………………….. 25

BEN18303 1

1.0 INTRODUCTION

Celestial tracking systems can vary in cost, from £1000 - £ 1,900,000,000. It is
optimal to find a system that is accessible to most people all over the world. To
resolve this, Angus Blomley has designed their own software, procedures, and guide
to putting together the project.

2.0 Goals / Aims / Objectives

This project has the capability to be improve endlessly, the scope of the project is
limited by the skills, technology, timeframe, and monetary requirements. Within these
requirements a list of goals aims and objectives have been defined:

• Design and print a 3D structure for all components using Fusion 360.
• Gather Live GPS(Global Positioning System) Data.
• Gather Live IMU(Inertial Measurement Unit Data.
• Gather Live data from Skyfield API.
• Use Arduino and Raspberry Pi to configure the received Data.
• Create GUI(Graphical User Interface) to display information and controls.
• Command motors to point in the direction of selected celestial object.
• Calibrate the device as one whole system for orientation and accuracy.
• Prove that where the device is pointing is accurate.
• Take photos and display information of chosen celestial object.

The final goal for an ideal scenario requires that the Celestial Object Tracker will
point the camera precisely in the direction of the chosen celestial object via a GUI
and take a photo highlighting the object and display information about it on a
monitor.

3.0 Review of Research

To understand if this project is possible to conduct, thorough research is necessary.
Projects of similar nature have been achieved in the past, which makes this a good
starting point to build and improve on using a personal approach, with the provided
skills already attained from the past. The skills required for this project include:

• Good Programming knowledge (Python, C++)
• Some knowledge of electronics
• Mechanical Knowledge
• Design Software (Fusion 360)
• Mathematics
• Astronomy

BEN18303 2

Findings in the following information has allowed me to gather useful information
that has led to the outcome this project:

• ‘Satellite Newsgathering’
• ‘Automated #RaspberryPi Planet Tracking GOTO Telescope’ – YouTube
• ‘NRC Publications Archive Archives des publications du CNRC Inertial

Measurement Unit (IMU) testing procedure Chaulk, Mitchell’
• ‘CNC V3 Shield Arduino Pinout (Which Arduino Pins Connect Where On A

CNC V3 Shield?)’ – YouTube
• ‘How to use the GT U7 GPS module’ - YouTube
• ‘Raspberry Pi Camera Module 3 NoIR’ - PiHut
• ‘2PCS TMC2208 V1.2’ – Amazon
• ‘https://rhodesmill.org/skyfield/’ - Skyfield API

As for the review of research, it was very clear that adequate research is needed.
During the development process of creating a working project, hundreds of problems
needed to be solved. By taking extra time in doing research, many of these problems
could have been mitigated, leading to numerous hours being saved.

3.1 Background To Science

Due to the nature of this project, great scientific measures must be taken to be
successful. These measures include using extreme precision to combine the
calculations of the following live data:

 IMU (Inertial Measurement Unit) for orientation
 GPS (Global Positioning System) for location
 Skyfield API (Application Processing Interface) for Celestial Coordinates
 Engineering the movement (Gear ratios and stepper counts)

To achieve the extreme accuracy required, the correct calculations must be applied.
To do this, we use the collected data. ‘The position of a particular object in space
can be represented in numerous ways, a widely used method is the equatorial
coordinate system. This uses the centre of the Earth and an observation point and a
much larger celestial sphere which encompasses the Earth.' (Derek, 2020).

3.2 Theory

We need to define two parameters to locate an object along this celestial sphere, the
first is RA (Right Ascension) which measure the angular distance of an object
eastward along the celestial equator from the vernal equinox. The second parameter
is the declination, which measures the angle of an object perpendicular to the
equator, north being a positive value and south being negative value. (Derek, 2020).
But the observer location will not be from the centre from the Earth, the observations
will be made from the Live GPS Coordinates. The object that will be tracked is
moving on its

BEN18303 3

on trajectory, therefore the direction of
which the camera points will need to be
continuously updated. To do this, data
can be gathered from the Skyfield API.
The celestial object tracking device can
pan and tilt, in astronomy this terminology
translates to elevation and azimuth. The
reason for obtaining the azimuth and
elevation coordinates with time, is to
calculate the angle necessary to point in
the correct direction.
Here's Earth inside the big ball. Declination (green) is measured
in degrees north and south of the celestial equator. Right
ascension, akin to longitude, is measured east from the equinox.
The red circle is the Sun's apparent path around the sky, which
defines the ecliptic. [KING, 2019]. – FIG.1

4.0 Methodology

This section follows a comprehensive approach of the design process, integrating
hardware, software, data processing and the graphical user interface for the
Celestial Object Tracker. The goal was to achieve a system able to track celestial
objects by combining GPS and MPU data with stepper motor function to align the
Picam to specified celestial coordinates.

4.1 Structural Design

The structure of the pan and tilt was designed using fusion 360, building upon
iterations of previously designed models.

Fusion 360 Sketch of the base and the lid, scale in mm. This is where the bulk of electrical equipment is stored. FIG2

BEN18303 4

Z - axis

The base of the pan and tilt structure is responsible for securing the X(pan) direction
motor. Both the X and Y(tilt) motors are connected to a 20 teeth aluminium wheel,
attached to a 200mm timing pulley and then turning a 40 teeth wheel. A 2:1 gearing
ratio is applied, for every revolution on the motor makes it half on the 40 teeth gear.
Having more teeth on the larger wheel give a much higher access to accuracy, which
is crucial for this type of project.

The top of the pan and tilt structure is for housing the tilt mechanism, along with the
operation of the Picam Module 3, IMU and Raspberry Pi 4.

Fusion 360 Sketch of the pan and tilt in axis X and Z scale in mm. FIG3

Fusion 360 Sketch of the pan right side Y and Z axis, for the areas labelled in measurements are
for the mounting of the Nema 17 tilt stepper motor labelled as motor(Y). Scale in mm. FIG4

X - axis

Y - axis

BEN18303 5

Here is the extrusion of the base and lid, resembling the model of the 3D print. FIG5

Extruded sketch of the pan and tilt, resembling the model of the 3D print. FIG6

BEN18303 6

Completed 3D print and assembly of the celestial object tracking system. FIG7

BEN18303 7

4.2 Module setup and installation

This project involves 3 sets of live data to be received. GPS, IMU and celestial
coordinates. Identification of observer’s position must be relative to celestial
coordinates; this can be achieved using live data capture via GPS and IMU.

4.2.1 GPS – Global Positioning System

This project uses the GT-U7 GPS module, this device has two areas of power and
data transmission shown in figure 10.

GT-U7 inputs/outputs:

This device has been tested indoors and outdoors for reliability. Ublox developed a
program named ‘U-center’, this can capture all the information that the GT-U7 can
obtain.

VCC – Voltage/current,
for power input (3.3v/5v).

GND – for grounding
the power input.

RXD – Receive data. TXD – Transmit Data.

Antenna – increasing
range of satellite data

Antenna – input. Mounting Screw hole. Micro USB – simple
data access via PC.

GPS Module – GT-U7. FIG8

LED - Status

BEN18303 8

The first test was done indoors beside a window. Results after 10 minutes from
startup:

This graph shows the history of
satellite connection, this helps
identify the stability of the GPS
connection to satellites over time.
Colour codes:

Green - Valid 3D navigation fix
Blue - Degraded navigation fix
Cyan - Valid 2D navigation fix
Red - No or invalid navigation fix

[U-Blox, 2022]

Satellite level history. FIG9

Live satellite level. FIG10

Live GPS data. FIG11

The live satellite level graph
displays the name of the satellite
on the x axis(e.g. G26) and the
signal strength in dBhz (decibels
relative to hertz).

SNR(signal-to-noise ratio) is
usually expressed in terms of
decibels. It refers to the ratio of
the signal power and noise power
in a given bandwidth. [GNSS,
2010]

Live GPS data frame shows the
vital information needed for this
project to work. The GPS must
be in a permanent state of ‘3D’ in
‘Fix Mode’. When more than four
satellites are connected and a
signal strength above 30dBhz, a
fix is available and accurate
location data can be calculated.

BEN18303 9

MPU6050 Module. FIG14

The second test consisted of taking the GPS outdoors and connecting it to a laptop:

4.2.2 MPU – Motion Processing Unit

The MPU6050 module used in the project is a commonly used unit. The MPU6050
is a Micro-Electro-Mechanical Systems (MEMS) that consists of a 3-axis
Accelerometer and 3-axis Gyroscope inside it. This helps us to measure
acceleration, velocity, orientation, displacement and many other motion-
related parameters of a system or object. [Joseph, 2022]

The information that this module provides will be able to make the device identify
what orientation it is, thus the direction.

VCC – Powers Module via 5v/3.3v

GND – Ground pin

SCL – Serial Clock, clock pulse for I2C communication

SDA – Serial Data through I2C communication

XDA – Auxiliary Serial Data

XCL – Auxiliary Serial Clock

ADD/ADO - Address select pin if multiple MPU6050
modules are used.

INT - Interrupt pin to indicate that data is available for
MCU to read. [Joseph, 2022]

GT-U7 active outdoor and
sending signal to laptop. FIG12

Decoded GPS information on U-
Centre. FIG13

BEN18303 10

The IMU sensor must be mounted to the camera, this allows the object required to
be tracked is relative to the camera. The sensor detect pitch, roll, yaw and needs to
be calibrated every time the device is turned on or moved to allow for accurate
readings and measurement.

4.2.3 Motors, Gearing and Drivers

Nema17 motors are used in this project due to low cost and simplicity. These motors
combined with two TMC2208 stepper motor drivers allow the motor to make micro
steps of up to 16 times, significantly increasing the accuracy.

A close-up photo of the IMU, model is the MPU-6050. - FIG15

Camera highlighted in a blue box and IMU in red. – FIG16

A close-up photo of the TMC2208 stepper motor drivers installed into the Arduino CNC shield. FIG17

BEN18303 11

Base motor(X) Layout. FIG18

Base motor(X) Mount. FIG19

Tilt motor(Y) Mounted. FIG20

BEN18303 12

Nema17 Nema17

CNC Shield

12v Power Supply

Legend

GT-U7

Combining the modules for serial
and I2C communication.

MPU6050

 TX – RX, Arduino receives data from GPS.
 5V power from Arduino to GPS.
 GND(ground) for GPS.
 SCL, Serial Clock, clock pulse for I2C communication.
 Serial Data through I2C communication
 3.3v power from Arduino for MPU6050
 GND(ground) for MPU
 Nema17 power, ground, stepDir, stepCount

BEN18303 13

4.3 Software Environment

Below is high-level data flow diagram of the celestial star tracker project:

BEN18303 14

4.3.1 Libraries

The core of how the technology works in this project lies in the programming.
Utilizing the power of already existing libraries makes creating this project far more
achievable. For Raspberry Pi, Python is the chosen programming language due to
its vastly existing astronomy community and widely used applications. Arduino must
use its own programming language which derives from C++.

To acquire data, the libraries must be installed and imported as follows:

Python:

• Serial – Allows for serial connections, this refers to “sending data one bit at a
time, sequentially, over a communication channel or computer bus”
(Mackenzie, 1980).

• Time – The time module provides many ways of representing time in code,
such as objects, numbers, and strings. It also provides functionality other than
representing time, like waiting during code execution and measuring the
efficiency of your code. (Ronquillo, n.d.)

• Tkinter – The tkinter package (“Tk interface”) is the standard Python interface
to the Tcl/Tk GUI toolkit. Both Tk and tkinter are available on most Unix
platforms, including macOS, as well as on Windows systems. (Foundation,
2024)

• Skyfield.api – Skyfield computes positions for the stars, planets, and satellites
in orbit around the Earth. Its results should agree with the positions generated
by the United States Naval Observatory and their Astronomical Almanac to
within 0.0005 arcseconds (half a “mas” or milliarcsecond). (Rhodes, 2024)

Arduino:

• Wire – allows you to communicate with I2C devices, a feature that is present
on all Arduino boards. I2C is a very common protocol, primarily used for
reading/sending data to/from external I2C components. (Arduino, Wire,
2023)

• I2Cdev – collection of uniform and well-documented classes to provide simple
and intuitive interfaces to an ever-growing collection of I2C devices. Each
device is built to make use of the generic i2cdev code, which abstracts the
I2C bit-level and byte-level communication away from each specific device
class, making it easy to keep the device code clean while providing a simple
way to modify just one class to port the I2C communication code onto
different platforms (Arduino, PIC, simple bit-banging, etc.). (Rowberg, 2024)

Serial Interface example. FIG21

BEN18303 15

• MPU6050 – MPU6050 Combines a 3-axis gyroscope and a 3-axis
accelerometer on the same silicon die together with an onboard Digital Motion
Processor(DMP) which processes complex 6-axis MotionFusion algorithms.
(Cats, 2024)

• AccelStepper – This library allows you to control unipolar or bipolar stepper
motors.” (Stepper, 2018)

• TinyGPS++ - A compact Arduino NMEA (GPS) parsing library (Lee, 2019)
• SoftwareSerial – The SoftwareSerial library allows serial communication on

other digital pins of an Arduino board, using software to replicate the
functionality (hence the name "SoftwareSerial"). It is possible to have
multiple software serial ports with speeds up to 115200 bps. A parameter
enables inverted signalling for devices which require that protocol. (Arduino,
SoftwareSerial Library, 2022)

These libraries get imported and included into each of the development
environments as shown in figures 11 and 12:

4.3.2 Initialization and variables

Initializing the system is asking all the modules to bootup so they are ready to send
and receive data:

Python libraries import. FIG22

Arduino libraries include. FIG23

Start Arduino initialization. FIG24

BEN18303 16

In figure 24 line 9, we call ‘MPU6050 mpu’ – this defines MPU6050 from the library
into a shorter name ‘mpu for readability.

Line 10:

‘AccelStepper stepperX(AccelStepper::DRIVER, 2, 3),
stepperY(AccelStepper::DRIVER, 4, 5);’

is defining the names for the motors followed by the pin numbers attached to the
CNC shield.

Line 11:

‘SoftwareSerial serial_connection(17, -1);’

SoftwareSerial is defined as the serial connection between the GPS and the Arduino,
which is responsible for the arduino to receive GPS data.

Line 12:

‘TinyGPSPlus gps;’

Boots the ‘TinyGPSPlus’ library as ‘gps’ for readability.

Figure 25 displays initialization code and variables for the python script:

Line 8: Serial library is called and defines the port(‘COM4’), baud rate(‘9600’) and
timeout(0.1 seconds) for the USB connection between the Arduino and the
Raspberry Pi 4. This information is stored the variable named ser for readability and
time saving purposes.

The ‘loader’ and ‘planets’ variables store the value of skyfield.api library being called.
This allows us to fetch useful information like celestial coordinates for calculations
later.

Python script initialization and variables FIG25

BEN18303 17

‘root = tk.Tk()’ is defined to call from the tkinter library which is responsible for the
GUI(graphical user interface).

All the other information is set to either ‘0’ or ‘none’, this makes it ready to receive
data in preparation for being filled with live data.

Arduino variables shown in Figure 27.

4.3.3 Data acquisition and functions for Arduino

Figure 28 is the start of the ‘void loop’ function and the ‘while’ function for extracting
the GPS data using the tinygpsplus library. If the GPS is collecting data this function
will return the Latitude, Longitude, Altitude, and number of satellites connected with
appropriate measurements and decimal places given. This function will run
immediately and every time the void loop function is called.

Define celestial objects into an object array FIG26

Define Arduino variables. FIG27

BEN18303 18

MPU live data extraction function using MPU6050 library. FIG29

Figure 29 extracts live data from the functioning of the MPU:

Start of Void Loop and GPS Extraction function using tinygpsplus library. FIG28

BEN18303 19

Void serialEvent function parses information and receives commands from python script. FIG30

The track celestial object function receives the azimuth and elevation
coordinates and calculates the correct positions for the motors. FIG31

BEN18303 20

Graphical User Interface. FIG32

Safe Read Line. FIG33

4.3.4 The Python Script

The script is developed to create a graphical user interface(GUI) application using
‘tkinter’ for tracking celestial objects and reading live data. It can communicate to
Arduino via serial communication and parse any data transferred between devices
as Python is high-level and Arduino is low-level. Live data about the location and
orientation of the device is sent to the script, it uses this information to send
commands for aligning with chosen celestial bodies that have been put in the format
of buttons on the GUI.

Figure 32 shows a screen shot of the project’s
graphical user interface with the live GPS and MPU
data being updated every 500ms.

We use the MPU data to make sure that the
information being displayed on the Accel and Gyro is
within 5 numbers of the zero’ d position. The zero’ d
position is the numbers that will be output for all the
axes after the MPU has been calibrated.

The MPU must be calibrated every time the device
has moved.

The safe read line function shown in figure 33 safely reads a line from the serial
connection and handles exceptions.

BEN18303 21

Insufficient data else print statement for MPU. FIG35

Insufficient data else print statement for MPU. FIG34

The most complex part of this project was developing the ‘update_data()’ function,
the beginning of this function starts in figure 34.

The relevant global variables are added to this function, this function will be
responsible for receiving the Arduino information by using ‘line =
safe_read_line()’ to read the serial port and using the if statement to see if data
is available continue to process the data.

An if statement is created to read the MPU data which is called by

‘if line.startsWith(“MPU: ”, “”).split(‘,‘)’

The python script is using Serial library functions ‘line.startsWith ‘ and ‘.split’ to
read through the serial connection and select the code that was written in the
Arduino sketch. The collected code contains the live data from the MPU, it is then
inserted into the global variables ‘global accel_x, accel_y, accel_z, gyro_x, gyro_y,
gyro_z ‘ by selecting the 6 parts of information and assigning it via an index method.

Now that the data is parsed, ready and available it can be used in the GUI.
‘mpu_vars’ is the GUI string(text) that is being displayed to the user.

If the data cannot be read from the line or correctly parsed a print statement will be
sent to the terminal displaying the message “Insufficient MPU data elements”.

BEN18303 22

GPS Data receive from Arduino and parsed for python script use. FIG36

Button command and return to home functions. FIG37

The process for the GPS remains similar in figure 36:

A final check is done to ensure the data has been updated to check the global
variables to see if their value is none.

‘Root.after(100, update_data)’ – is a mark to end the function, update the
root(GUI) with the function update_data and do this every 100ms.

Figure 37: Button command function, when a button is clicked, and the data is
available the function will send the command through the code and received by the
motors to move the pan and tilt head in the direction of the chosen celestial body.

Return to home function moves the device back to its zero’ d calibrated position.

BEN18303 23

Track celestial object function. FIG38

Main function. FIG39

Figure 38: Track celestial object function is responsible for gathering the coordinates
of the celestial object using the skyfield.api library, also setting the observers location
variable ready to receive live data.

The main function is where the final stop for all the data in the project is processed
and output. All the functions created throughout the project will be called in the main
function.

Here is where most of the graphical user interface is designed and updated with the
all the functions created previously.

BEN18303 24

5.0 Critical Reflection Report

This project is the result of weeks of research, hundreds of problems solved,
constant trial and error, analysis, testing and calibration. Overcoming the difficulties
delt with communication differences between hardware and software, difficulties with
the gearing and calibration phase, aligning everything using all the measurements
and maths involved reflect the importance of proper testing and calibration.

6.0 Brief Description Exhibition Element

A showcase of the celestial object tracker being used outdoors in Realtime will
display an effort to fulfil an engineering problem that will offer a tangible connection
with the vastness of space.

7.0 Findings / Conclusions

The project can track objects from which have been chosen at an affordable rate.
Analysis has revealed that combining GPS and MPU data can significantly improve
tracking accuracy. Though signal interference can be a limitation as the device must
use a clear line of sight to the sky.

8.0 Recommendations / Next Steps

• Making this project open source could bring new ideas and skills to develop
this project further.

• Better accuracy could be achieved using larger teeth on the gearing making
even more micro steps. Using a much larger ratio.

• Creating an interactive app to operate the device for ease of use.

• Using a much more powerful camera attached to a telescope for nighttime
use to see more detail of the planets.

• Adding more celestial tracking objects to be available in the application, e.g.
the moons of other solar system planets and stars.

9.0 Evolution of the project

The original project was initially focused on an interactive projection mapping device,
using Realtime tracking from infrared technology and a raspberry pi. The idea was a
great one, though after testing and finding performance issues regards to data
transfer speed from the camera input to the processing of information and then
output on to the projector. This project would only be possible at the expense of a
large processing unit, rendering the cost of the project to skyrocket. It was possible

BEN18303 25

Original Project Idea. FIG54

to make it work but not at the speed it was initially intended for, running at 2 frames
per second.

After considering multiple other options, the decision to change the project was
inevitable. Conjuring up new ideas using the existing hardware from the original
project was the only way to revive the situation. Time had become a critical factor at
this point, this brought the idea of using existing skills and existing hardware to
transfer the technology from the interactive projection mapping device the new
celestial object tracking device. Immediately a fast-tracked development plan was
created, a scope was prepared, and the project began.

Using existing skills in Fusion 360, programming, electronics, and project planning
the project developed fast and the outcome is the result of 100% focus for weeks on
end.

BEN18303 26

10.0 Testing and validation

Iterative testing with mock celestial bodies was essential when dealing with the
complications of live data from GPS. Obtaining live data from the GPS in a testing
environment proved to be a difficult task. Mock GPS data is used for testing the real
MPU data to ensure the device is working as intended. The moon could be seen in
the sky out the window, the first time the project worked with live data the devices X
motor correctly pointed in the direction of the moon, though the Y motor did not seem
to move.. To solve this problem, I needed to test each part of my project through a
process of elimination.

An entire day of testing was done to ensure the code was working correctly, the
hardware was all corrected and the problem was eventually solved when the
decision to eliminate the motor, one of the motors had overheated as the day was a
warm one beside the bedroom window. By ordering a new TMC2208 the problem
was solved.

Further tests were done to ensure the alignment was correct, this came with another
problem, to much slack was apparent on the Y motor when the tilt plate went beyond
80 – 90 degrees. The plate would fall, and the timing belt would not catch on to the
teeth. To fix this, the 200mm timing belt was shortened to about 190mm which
solved this issue.

To simulate a testing environment to know if the camera is point in the correct
direction, an application called ‘Stellarium(a free open-sourced planetarium)’ can be
used to visually verify the positions of celestial objects at the local time, these can be
compared with the projects calculated values to ensure accuracy.

After this test is conducted, the ability to accurately track and display information on
celestial objects within a 2% margin of error with responsiveness of the project and
feedback about reliability the success and failure of the project will be determined.

11.0 Meeting original specification

The original specification compared to the outcome of this project has deviated
significantly, with the shifted focus from interactive projection mapping to celestial
object tracking. Although the original idea was not as accurate as the outcome, the
overall idea of aiming to improve educational tools through technology is met.

The valued outcome of the second project is perceived as more purposeful and
brings more value and impact.

BEN18303 27

12.0 Gantt Chart Overview

The following is a Gantt chart of progress from the secondary project proposed.

Gantt chart information table:

ID Name Start Finish Duration %
Complete

0 Research Phase 09/12/2023 18/12/2023 10 days 100

1 Assembling and Initial Testing of
Hardware

19/12/2023 02/01/2024 15 days 100

2 Development of GPS, MPU, and
Stepper Motor Control Software

03/01/2024 17/01/2024 15 days 100

3 Integrating Hardware with Software
for Data Acquisition and Motor
Control

18/01/2024 31/01/2024 14 days 100

4 Creation and Testing of Algorithms
for Celestial Object Tracking

01/02/2024 14/02/2024 14 days 100

5 Development of Graphical User
Interface for System Control and
Data Display

15/02/2024 28/02/2024 14 days 100

6 Comprehensive Testing and
Calibration of the Celestial Object
Tracker

01/03/2024 14/03/2024 14 days 100

7 Optimization for Performance,
Usability, and Reliability

15/03/2024 28/03/2024 14 days 100

8 Compilation of Project
Documentation and Critical
Reflection Report

29/03/2024 11/04/2024 14 days 100

9 Preparing and Rehearsing for the
Final Presentation

12/04/2024 18/04/2024 7 days 40

BEN18303 28

 Dec 2023 Jan,2024 Feb,2024 Mar,2024 Apr, 2024

 03 Dec 10 Dec 17 Dec 24 Dec 31 Dec 07 Jan 14 Jan 21 Jan 28 Jan 04 Feb 11 Feb 18 Feb 25 Feb 03 Mar 10 Mar 17 Mar 24 Mar 31 Mar 07 Apr 14 Apr 21 ...

ID

0

1

2

3

4

5

6

7

8

9

13.0 APPENDIX

BEN18303 A-1

Arduino GND and 5V connection to GPS. FIG41

Arduino pins 0(Receive) and 1(Transmit) . FIG42

GPS Satellite output to Arduino
serial monitor . FIG40

Serial output to Arduino IDE serial
monitor.

After the first successful test of
getting a satellite fix I was able to
print all the information that is
available on the GT-U7 device.

Connected via the TX serial pin from
Arduino. Tested directly on to a PC

BEN18303 A-2

Mulitmeter test. FIG43

Testing wires that were created for serial and power connection using a multimeter.

BEN18303 A-3

CNC shield schematic. FIG44

Arduino CNC shield Diagram.

BEN18303 A-4

CNC I2C pins. FIG45

Connecting I2C communication between CNC shield and MPU:

BEN18303 A-5

Soldering pin out process. FIG46

Soldering the pin out connector to the MPU6050:

BEN18303 A-6

No satellite fix. FIG47

No Fix to receive sattelite data:

BEN18303 A-7

MPU serial output. FIG48

First time reciving live MPU data using the MPU6050 Library. Using the example
code that comes with the Library install.

BEN18303 A-8

Orientation of MPU. FIG49

Orientation of MPU(2). FIG50

Testing orientation of MPU:

BEN18303 A-9

Outdoor setup. FIG51

Outdoor GPS tesing:

BEN18303 A-10

Colour code of U-Center. FIG52

U-Blox U-Center software colour codes:

BEN18303 A-11

MPU6050 Circuit. FIG53

MPU6050 Circuit design [Joseph, 2022]:

14.0 Bibliography
Arduino. (2022, 06 15). SoftwareSerial Library. Retrieved from Arduino:

https://docs.arduino.cc/learn/built-in-libraries/software-serial/

Arduino. (2023, 12 05). Wire. Retrieved from Arduino:
https://www.arduino.cc/reference/en/language/functions/communication/wire/

Cats, E. (2024, March 17). mpu6050. Retrieved from GitHub:
https://github.com/electroniccats/mpu6050

Derek. (2020, March 6). Automated #RaspberryPi Planet Tracking GOTO Telescope. Retrieved from
YouTube: https://www.youtube.com/watch?v=v2pqya3c1_M&t=922s

Developers, S. (2024, March 31). Skyfield: Elegant Astronomy for Python. Retrieved from Skyfield:
https://rhodesmill.org/skyfield/

Foundation, P. S. (2024, March 31). tkinter — Python interface to Tcl/Tk. Retrieved from Python:
https://docs.python.org/3/library/tkinter.html

GNSS, I. (2010, December 2). Measuring GNSS Signal Strength. Retrieved from insidegnss:
https://insidegnss.com/measuring-gnss-signal-strength/

Joseph, J. (2022, May 16). How Does the MPU6050 Accelerometer & Gyroscope Sensor Work and
Interfacing It With Arduino. Retrieved from circuitdigest:
https://circuitdigest.com/microcontroller-projects/interfacing-mpu6050-module-with-
arduino#:~:text=The%20MPU6050%20is%20a%20Micro,of%20a%20system%20or%20object
.

KING, B. (2019, February 26). RIGHT ASCENSION & DECLINATION: CELESTIAL COORDINATES FOR
BEGINNERS. Retrieved from skyandtelescope: https://skyandtelescope.org/astronomy-
resources/right-ascension-declination-celestial-coordinates/

Lee, J. (2019, November 1). TinyGPS. Retrieved from GitHub:
https://github.com/neosarchizo/TinyGPS

Mackenzie, C. E. (1980, March 14). Serial_communication. Retrieved from wikipedia:
https://en.wikipedia.org/wiki/Serial_communication

Ronquillo, A. (n.d., n.d. n.d.). A Beginner’s Guide to the Python time Module. Retrieved from Real
Python: https://realpython.com/python-time-module/

Rowberg, J. (2024, March 31). Forums. Retrieved from i2cdevlib: https://www.i2cdevlib.com/

Shilleh. (2023, Janruary 2). How the MPU6050 Works | MEMS Overview. Retrieved from YouTube:
https://www.youtube.com/watch?app=desktop&v=MsyqsOUBQuU

Stepper. (2018, August 22). Retrieved from GitHub: https://github.com/arduino-libraries/Stepper

U-Blox. (2022, May 24). u-center_user_guide. Retrieved from U-blox: chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://content.u-
blox.com/sites/default/files/u-center_Userguide_UBX-13005250.pdf

Figure 10. https://m.media-amazon.com/images/I/51jU-C7lgLL._AC_.jpg

Close up image of MPU circuit, Front Page of report - https://circuitdigest.com/microcontroller-
projects/interfacing-mpu6050-module-with-
arduino#:~:text=The%20MPU6050%20is%20a%20Micro,of%20a%20system%20or%20object.

Image of Saturn, Executive Summary page - https://wallpapers.com/images/featured/jupiter-4k-
u0vxq4j32tby8tox.jpg

https://circuitdigest.com/microcontroller-projects/interfacing-mpu6050-module-with-arduino#:%7E:text=The%20MPU6050%20is%20a%20Micro,of%20a%20system%20or%20object
https://circuitdigest.com/microcontroller-projects/interfacing-mpu6050-module-with-arduino#:%7E:text=The%20MPU6050%20is%20a%20Micro,of%20a%20system%20or%20object
https://circuitdigest.com/microcontroller-projects/interfacing-mpu6050-module-with-arduino#:%7E:text=The%20MPU6050%20is%20a%20Micro,of%20a%20system%20or%20object

	14.0 Bibliography

